Over 10 years we help companies reach their financial and branding goals. Engitech is a values-driven technology agency dedicated.



411 University St, Seattle, USA


+1 -800-456-478-23

Dyno for Databricks

Comprehensive, best-in-class capabilities for data integration, data quality, analytics, & AI/ machine learning.

Lakehouse-native Data Quality Checks With Al-powered Anomaly Detection, Incident Alerts, and Issue Remediation Workflows. Enterprises across industries are accumulating and processing huge volumes of data for advanced analytics and ML applications. But, handling data at petabyte-scale brings many challenges — ranging from infrastructure management requirements, to provisioning bottlenecks, to high costs of acquisition and maintenance. Databricks is designed to remove those barriers.


Modernize Business Intelligence with Dyno and DataBricks


As a powerful cloud-based enterprise Data Lakehouse platform, Databricks is fine-tuned for processing, storing, and analyzing massive data volumes for a variety of use cases, such as:

To ensure good data quality across these design patterns, enterprises need modern data quality monitoring tools that are powerful, easy-to-use, extensible, and deeply integrated with Databricks. That’s where Dyno’s Lakehouse-native Data Quality checks with Al-powered Anomaly Detection come in to help drive high confidence and trust in Databricks data by consumers and users.

3 Key Challenges of Modernizing Data Stacks

When processing thousands of tables from multiple data sources with hundreds of columns in Databricks, you need granular control of data quality and real-time visibility into data pipeline health. With modern data stacks supporting data-driven applications, enterprises want to consume data as soon as it’s available, which gets harder and more complicated due to:

When running SQL queries in Databricks, it’s critical to deploy partition-aware data quality checks, because it’s very easy to do full table
scans or scan more partitions than necessary. Given how data-driven applications are, a break in data pipelines can lead to severe financial and operational consequences for businesses. Dyno automatically recognizes partitions, ensuring every data quality query is efficient and optimized for scalability and high performance.

Combining Dyno and Databricks enables our joint customers to trust their data in Databricks on day zero.

Get full visibility into the health of Databricks data pipelines with Dyno efficieni pushdown Data Quality checks and Al-powered anomaly detection, enabling data teams to quickly identify bad data, pinpoint elusive silent errors, and remediate incidents before downstream data processing and analytics services are rendered unusable. Dyno is highly flexible and extensible with out-of-the-box integrations with IT ticketing , chat tools, email, data management, and workflow platforms, enabling you to consolidate incidents and file tickets directly from Dyno for efficient end-to-end DataOps management at scale. 

What does Data Quality mean to Dyno?

Data Availability

Data doesn't arrive on time, isn't available, or isn't the right volume.

Data Comformity

Data no longer conforms to the agreed upon dimensions, resulting in schema change(s), dropped column(s), column data type change(s).

Data Validity

Data itself isn't valid - columns aren't registering correct values or columns contain too many null values.

Data Reconciliation

Data is compared and reconciled between two different stages in the pipeline during movement and transformation


Dyno Key Features

Top 3 Dyno Data Quality Design Patterns for Databricks

Scheduled Checks

When processing pipeline transformation operations, such as going from one delta table to another, run data quality checks on a schedule at different series of the pipelines.

Trigger Mode

When orchestrating ETL and declaring pipeline definitions, include closed-loop response actions before processing data further — such as quarantining bad data or breaking the pipeline upon data quality failures.

Delta Live Tables

When processing high-volume streaming data with no latency, insert and deploy a structured streaming job in the Databricks cluster, which continuously calculates DOls as new data arrives, with sub-second data processing and analysis.

Dyno is a no-code data quality platform with pushdown data quality checks, Al-powered monitoring and anomaly detection alerts that enables enterprises to achieve 100% data quality coverage 10x faster than legacy tools. across cloud, hybrid, and on-premises environments. on batch or streaming data — scalable in minutes, not months.